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ABSTRACT
Routing is a time-consuming stage in FPGA compilation, and var-
ious parallel approaches have been proposed to accelerate it by
concurrently routing non-overlapping nets. However, the require-
ment for non-overlapping nets limits the potential for large-scale
parallelism, primarily due to two factors: (1) large circuits inher-
ently contain many nets with overlapping bounding boxes, and
(2) in modern FPGAs, such as Xilinx UltraScale FPGAs, a net with
a large bounding box often has high occupancy but low utiliza-
tion of the routing resources. To overcome these limitations, we
present Potter, a novel parallel overlap-tolerant router designed to
maximize parallelism. Our approach employs recursive partition-
ing to divide nets into balanced partitions with minimized overlap
and allows for routing these partitions in parallel. Additionally, we
propose an innovative mechanism for updating the congestion fac-
tors to enhance PathFinder in handling routing resource overflows.
Evaluations on the FPGA 2024 contest benchmarks demonstrate
that Potter achieves significant performance improvements, with
average speedups of 12× and 8× compared to RWRoute and Vivado,
respectively, while also reducing wire lengths by 4% and 45%. No-
tably, in some congested benchmarks, Potter exhibits a substantial
30× speedup over RWRoute.
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1 INTRODUCTION

The prolonged compilation time in FPGA development has long
been a concern in the FPGA community. Reducing the physical
design time and accelerating the development cycle is crucial and
urgent for promoting FPGA adoption and applications, particularly
in the era of AI and GPUs.

Routing is a computationally intensive and time-consuming
stage in the physical design of FPGAs. After logic modules are
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Figure 1: The number of overlapping nets in CoreScore 1700
in RWRoute [16] and a routing example in UltraScale FPGA.

assigned physical locations on an FPGA, the routing process in-
volves connecting logic nets using FPGA routing resources, such
as wire segments and configurable switches. Due to the limited
availability of routing resources and the significantly large number
of logic nets in modern circuit designs, finding a valid routing solu-
tion that optimizes wire length or timing without causing resource
overflow often requires many iterations of rip-up and reroute.

To expedite FPGA routing, many works have been studying
parallel routers for FPGAs [11], exploring both coarse-grain and
fine-grain parallelism. Coarse-grain parallelism involves dividing
nets into independent partitions that can be routed in parallel, while
fine-grain routers parallelize the path searching for individual nets.
These two forms of parallelism are orthogonal and complement
each other. In this work, we focus on investigating coarse-grain
net-level parallelism.

Most existing approaches [3, 9, 13, 14, 17] for net-level parallel
routing employ recursive partitioning to divide nets into different
partitions and perform concurrent routing for non-overlapping
partitions. Although the requirement for non-overlapping nets can
ensure an accurate congestion state for routing, it largely limits
the potential for large-scale parallelism, especially in large circuit
designs and modern FPGAs primarily for two reasons. Firstly, large
circuits usually exhibit severe net overlapping. Take the CoreScore
1700, the largest circuit in FPGA 2024 contest benchmarks [4], as an
example. As shown in Fig. 1a, nearly 89.4% nets overlap with more
than 10,000 other nets under the default bounding box extension
in RWRoute [16], an academic sequential router for Xilinx FPGAs.
Secondly, the actual utilization of routing resources is significantly
lower than the resources occupied by the net bounding box. As
shown in Fig. 1b, each switch box (SB) in Xilinx UltraScale FPGA
contains thousands of configurable switches while the routes of a
single net only require a few switches.

To maximize routing parallelism, we propose a novel parallel
overlap-tolerant router called Potter, designed for UltraScale FP-
GAs. Potter takes the placement solution and the FPGA architecture
in FPGA Interchange Format (FPGAIF) [5] as input and generates
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the routing solution in FPGAIF, which can be loaded into Vivado af-
ter conversion. We propose a two-stage overlap-driven partitioning
by first utilizing recursive partitioning to divide nets into different
partitions and then constructing overlap-tolerant net batches with
balanced workloads and minimized resource overlap. Furthermore,
we enhance the congestion updating mechanism in the negotiation-
based routing algorithms by dynamically adjusting the present and
historical congestion factors, enabling Potter to converge quickly to
an overflow-free routing solution in congested designs. The main
contributions of this work are as follows:

• We propose a novel parallel routing flow that can be seam-
lessly integrated into the physical design flow of the indus-
trial tool Vivado.

• We explore multi-threaded overlap-tolerant routing and de-
velop a two-stage overlap-driven partitioning approach to
minimize resource overlap across different threads and bal-
ance the workloads in threads.

• We devise a novel congestion updating mechanism to en-
hance the negotiation-based routing algorithms in solving
resource overflow.

• In the FPGA 2024 contest benchmarks, our proposed router,
Potter, achieves significant improvements over the state-
of-the-art methods in terms of both routing time and wire
length of the critical path. In congested designs, Potter demon-
strates a maximum speedup of 30× compared to RWRoute.
On average, Potter achieves a speedup of 12× with a wire
length reduction of 4% on RWRoute, and a speedup of 8×
with a wire length reduction of 45% on Vivado.

The remainder of this paper is organized as follows. Sec. 2 pro-
vides an overview of related works on FPGA routing. Sec. 3 de-
scribes the architecture of UltraScale FPGAs. Our methodology
is presented in detail in Sec. 4, and the experimental results are
discussed in Sec. 5. Finally, we conclude this paper in Sec. 6.

2 RELATEDWORKS
In this section, we present existing works on accelerating FPGA
routing through algorithmic improvements in sequential routing
and parallel routing.

2.1 Sequential Routing
Sequential routing algorithms based on the negotiation mecha-
nism have been widely adopted and proven effective in existing
FPGA routers [7, 8, 12, 16]. PathFinder [7] is the most popular se-
quential routing algorithm that uses the negotiation mechanism. In
PathFinder, the routing cost of a node is defined as (𝑏+ℎ)×𝑝 , where
𝑏 is the base cost, and ℎ and 𝑝 are the historical and present con-
gestion costs, respectively. The negotiation mechanism gradually
increasesℎ and 𝑝 of congested nodes and encourages congested nets
to utilize nodes with lower congestion costs. VTR 8 [8] improved
the routing times of the high-fanout nets through adaptive incre-
mental routing. CRoute[12] proposed a connection-based router
to selectively route congested connections instead of the whole
net and incorporated bias into the cost function. Based on CRoute,
RWRoute[16], which is adopted in RapidWright [6], is a sequen-
tial router targeting UltraScale FPGA architecture. It provides a
lightweight timing model and supports partial routing.

2.2 Parallel Routing
With the availability of a larger number of threads provided by
modern CPUs, several parallel algorithms have been developed to
accelerate the routing process in FPGAs [1–3, 10, 11, 13, 14, 17]. Re-
cursive partitioning is a popular approach in the parallel routers [3,
10, 13, 14, 17], which effectively divides the nets into different parti-
tions and routes non-overlapping partitions in parallel. In addition
to concurrent routing for non-overlapping nets, Gort et al. [1] and
ParaFRo [2] also studied the asynchronous routing for dependent
nets which can overlap with each other. Gort et al. [1] evenly dis-
tributed all nets among individual threads without considering net
dependencies and gradually reduced the active threads in later it-
erations to ensure convergence. Apart from the static scheduling
strategy of Gort et al. [1], ParaFRo [2] also employed a greedy
scheduling strategy that allows idle threads to fetch tasks from the
pool of nets to be routed. Although these two approaches achieved
significant speedup compared to other works, they did not handle
net overlapping between different threads well, resulting in dif-
ficulties in routing convergence and a large variance in routing
results.

Given the limitations of existing approaches, in this work, we
propose a more efficient overlap-tolerant multi-threaded parallel
routing based on a two-stage partitioning strategy which both
minimizes the net overlaps and balances the workload in different
threads. Furthermore, we devise novel dynamic congestion factors
that enhance existing sequential routing approaches to converge
quickly in congested designs.

3 PRELIMINARIES
In this section, we provide an overview of the UltraScale FPGA
architecture and describe the routing resource graph.

3.1 Architecture of Ultrascale FPGA
Our study focuses on Xilinx UltraScale FPGAs. The architecture,
as depicted in Fig. 2, consists of various resources, including con-
figurable logic blocks (CLBs), block RAM (BRAM), digital signal
processing (DSP) units, IO interfaces, and interconnect (INT) blocks.
The INT blocks play a crucial role in connecting non-adjacent blocks
in different positions and are regularly interleaved with other func-
tional blocks. Each INT block contains thousands of programmable
interconnect points (PIPs), which are configurable switches. Each
PIP connects a pair of wires which can horizontally or vertically
span 1, 2, 4, or 12 INT blocks.

3.2 Routing Resource Graph
The routing resource graph (RRG) is constructed from the INT block
network and represents the wires and PIPs in the FPGA. Fig. 3 illus-
trates a section of the RRG built from one INT block in the FPGA,
where each wire and PIP are treated as an RRG node and edge,
respectively. UltraScale FPGAs have a large number of intercon-
nect blocks and functional blocks to support the implementation of
complex circuits. A complete RRG for UltraScale FPGAs contains
over 28 million nodes and 100 million edges, presenting a signifi-
cant challenge for path searching compared to RRGs in academic
hypothetical architectures.
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Figure 2: The architecture of UltraScale FPGA.

Each RRG node has a capacity of one, and multiple nets using
the same RRG node results in resource overflow. The length of RRG
nodes depends on the number of INT blocks the physical wires span,
and the long nodes are usually insufficient resources compared with
the short ones. After placement, all sources and sinks of logic nets
in a circuit design are mapped to nodes on the RRG. The routing
task involves finding the shortest paths for all nets without any
resource overflow on the RRG.
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Figure 3: Example of the routing resource graph construction

4 METHODOLOGY
This section outlines the framework of our parallel overlap-tolerant
router, as depicted in Fig. 4. We begin by generating a compact
routing resource graph (RRG) in the pre-processing stage. The RRG
is constructed based on the placed netlist and the FPGA architecture,
excluding unnecessary wires and the programmable interconnect
points (PIPs). To fully utilize the available CPU threads, we will
apply a two-stage overlap-driven partitioning strategy to divide
the nets into 𝑇 workload-balanced and overlap-controlled batches,
where 𝑇 corresponds to the number of threads. In the subsequent
main routing stage, we will assign the batches of nets to different
threads and route them in parallel. After that, the present and
historical congestion costs of the RRG nodes will be updated based
on the dynamic congestion factors and resource overflow. This
process is repeated until the number of RRG nodes with overflow
falls below a threshold 𝜏 . In the post-processing stage, we will route

the remaining unrouted or congested nets to ensure convergence
and remove any redundant routing cycles.

(2) Parallel overlap-tolerant routing

Update congestion factors

#Overflow < 𝜏 

Route net batches in parallel

No

(1) Pre-processing

Generate overlap-tolerant net batches

Build a compact routing resource graph

Yes

Routed netlist

Placed netlist, FPGA architecture, CPU threads

(3) Post-processing

Route remaining unrouted or congested nets

Remove routing cycles

Figure 4: The overall flow of Potter.

4.1 Compact Routing Resource Graph
As described in Sec. 3, the complete routing resource graph (RRG)
of an UltraScale FPGA is very large and complex, resulting in sub-
stantial memory consumption and an extensive searching space for
routing. To address this issue, RWRoute[16] adopts an incremental
RRG construction approach. However, this method is not suitable
for parallel routing, as multiple threads would modify the RRG con-
currently. In Potter, we construct a compact routing resource graph
initially by excluding unnecessary wires for the current netlist.

There are two types of wires necessary for routing: (1) the wires
connecting INT blocks, which are the same for all netlists, and (2)
the wires connecting INT blocks with the net pins, which differ
across netlists. By including only these two types of wires and the
PIPs between them, we build an initial RRGwith nodes representing
wires. Since there are nodes in the initial RRG that have no outgoing
edges (not driving any other nodes) and are useless for routing, we
will iteratively remove these nodes until all the remaining nodes
in the RRG have at least one child node. This process results in a
compact RRG that has a size nearly 30% less than a complete RRG.

4.2 Partitioning-based Net Scheduling
To achieve high acceleration with multiple threads, it is significant
to balance workloads and minimize the dependencies of different
threads. We estimate the workload of routing a multi-pin net based
on the number of pins, and the resource conflicts are defined as
the overlaps of the net bounding boxes in different threads. In
the following, we introduce our two-stage partitioning-based net
scheduling approach to generate workload-balanced net batches
while minimizing conflicts.
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Figure 5: The first-stage recursive bi-partitioning with the
thread number, 𝑇 = 4.
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Figure 6: The second-stage overlap-tolerant partitioning

In the first stage, we perform recursive bi-partitioning to con-
struct a complete binary tree. The FPGA device is initially split into
two regions by a horizontal or vertical cutline. The nets are then
divided into three partitions: the parent partition containing the
nets across the cutline, and the two children partitions containing
the nets completely within the two regions. An optimal cutline is
chosen to minimize the imbalance of the total workloads in the chil-
dren partitions. We continue this recursive partitioning on the two
regions until the number of regions equals the number of threads𝑇 .
A binary tree is then constructed with tree nodes representing net
partitions. The tree nodes from top to bottom at the same tree level
correspond to the net partitions generated at the same recursive
level. Fig. 5 illustrates an example of this recursive partitioning and
the binary tree construction with four threads.

After the recursive bi-partitioning, the FPGA device is split into𝑇
regions and nets are assigned to different partitions at different tree
levels. Existing partitioning-based parallel routers [3, 14, 17] route
the net partitions in a level-by-level manner to ensure no overlaps
of net bounding boxes. However, this non-overlapping requirement
significantly limits parallelism. Tomake full use of available threads,
we introduce the second-stage overlap-tolerant partitioning. In this
approach, nets assigned to each level are re-assigned to 𝑇 regions
such that the out-of-the-region areas of the net bounding boxes are

net1

net2

INT INT INT INT INT INT INT INT

Figure 7: Example of parallel overlap-tolerant routing

minimized, and the total workload in each region is balanced. We
set a maximum workload in each region at level 𝑙 to 𝑊𝑙

𝑇
× (1 + 𝑟 ),

where 𝑟 is an imbalance ratio, and𝑊𝑙 is the total workload of the
nets at level 𝑙 . Each net at level 𝑙 is then assigned to a region that still
has available workload quota and has the maximum overlap with
its bounding box. It is worth noting that there may exist a few high-
fanout nets whose workload exceeds the maximum workload of a
region, and will result in a significant imbalance in net partitioning.
Therefore, we will route those high-fanout nets separately in the
post-processing stage. After the overlap-tolerant partitioning is
completed in each level, the nets assigned to the same region are
grouped into a net batch. Fig. 6 depicts the procedure and the result
of this overlap-tolerant partitioning for the example in Fig. 5.

4.3 Parallel Overlap-Tolerant Routing
The parallel overlap-tolerant routing is the core component of
Potter and contributes the most to the routing time. In this stage,
each available CPU thread is responsible for routing a batch of nets.
In Potter, each RRG node is assigned a lock to solve the data race
issue that arises from multiple threads accessing the data of the
node. Fig. 7 illustrates an example of the parallel routing for two
nets whose bounding boxes are overlapped. Although these two
nets access the same INT block in their routes, the possibility that
both net routes use the same RRG node is very small. Even though
the same RRG node is used, the resource overflow can be resolved
in the later iterations with the increase of the congestion cost on
this node.

Following the negotiation mechanism, Potter performs multiple
iterations of rip-up and reroute. In each iteration, the net batches
are routed in parallel, followed by congestion factor update. For
each net in a batch, Potter performs sequential connection-based
routing. In the following, we will describe the routing engine and
congestion factor update in Potter.

4.3.1 Connection-based routing engine. Similar to RWRoute [16],
Potter also adopts connection-based routing as the core engine.
The multi-pin nets in a net batch are split into source-sink two-
pin nets, referred to as connections. These connections are routed
independently but are encouraged to reuse the RRG nodes already
used by other connections from the same net. When a multi-pin
net is routed through a congested region, Potter only needs to rip
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up the congested connections instead of all the connections from
the net, which remarkably saves routing time.

Routing a connection involves finding the shortest path that
connects the source and sink nodes on the RRG. Potter adopts the
path searching algorithm used in RWRoute, with the node cost
function defined as follows:

𝑓 (𝑛) =
∑︁
𝑖∈𝑃

𝑐 (𝑖) + 𝑐 (𝑛) +𝑤1 × 𝑑 (𝑛) (1)

In Eq. (1), 𝑃 presents the partial path from the source node to
node 𝑛, and 𝑑 (𝑛) is the Manhattan distance from 𝑛 to the sink node.
𝑐 (𝑛) represents the node core cost, which is related to both the
node length and congestion, and is computed as follows:

𝑐 (𝑛) = 𝑏 (𝑛) × ℎ(𝑛) × 𝑝 (𝑛)
𝑠 (𝑛) +𝑤2 ×

𝑙 (𝑛)
𝑠 (𝑛) (2)

In Eq. (2), 𝑙 (𝑛) is the node length, and𝑏 (𝑛) is the base cost related
to the node direction and length. 𝑠 (𝑛) represents the share factor
that is related to the number of connections from the same net
that are also using node 𝑛. The term 𝑠 (𝑛) is designed to encourage
sharing of RRG nodes from the same net. The weights𝑤1 and𝑤2
in Eq. (1) and (2) are tunable. The historical and present congestion
costs, ℎ(𝑛) and 𝑝 (𝑛), are defined as follows:

𝑝 (𝑛) = 1 + 𝑢 (𝑛) × 𝑝 𝑓

ℎ(𝑛) =
{
ℎ(𝑛) + (𝑢 (𝑛) − 1) × ℎ𝑓 , if 𝑢 (𝑛) > 1
ℎ(𝑛), otherwise

(3)

In Eq. (3), the node usage 𝑢 (𝑛) is the number of nets using node
𝑛, and 𝑝 𝑓 and ℎ𝑓 represent the present and historical congestion
factors, respectively.

4.3.2 Congestion factor update. In RWRoute, the default values
of 𝑝 𝑓 and ℎ𝑓 are 2 and 1, respectively. In contrast, the enhanced
PathFinder [15] sets 𝑝 𝑓 to 1 and ℎ𝑓 to 5, as they found that a
fast-growing 𝑝 (𝑛) can result in slow congestion fixing and large
variance between different net routing orders. Unlike RWRoute
and the enhanced PathFinder, which use constant values for the
congestion factors 𝑝 𝑓 and ℎ𝑓 , we have devised a dynamic updating
mechanism for these congestion factors to help our router quickly
resolve routing congestion.

The update of 𝑝 𝑓 is given by Eq. (4), where 𝑖 represents the
iteration number and 𝛼1, 𝛼2, and 𝛼3 are parameters controlling
the range and decaying speed of the congestion factors. In the
early routing iterations, 𝑝 𝑓 is relatively large, which can help the
router to quickly finish the routing for most non-critical nets. In
later iterations, 𝑝 𝑓 is decreased to focus on fixing congestions by
reducing the impact on the net routing orders.

𝑝 𝑓 = 𝑝 𝑓 × (𝛼1 +
𝛼2

1 + 𝑒𝑖×𝛼3
) (4)

Eq. (5) gives the updating formula of ℎ𝑓 . Unlike 𝑝 𝑓 , ℎ𝑓 is in-
creased gradually to encourage the router to pay more attention to
congestion accumulated in recent iterations, which can accelerate
fixing of congestion.

ℎ𝑓 =
𝛽1

1 + 𝑒−𝑖×𝛽2
(5)

Table 1: Important parameters in Potter

Parameter Value Parameter Value Parameter Value
𝜏 25 𝑟 0.05 𝑤1 0.8
𝑤2 0.2 𝛼1 1.1 𝛼2 3.3
𝛽1 2 𝛽2 0.5 𝛼3 1

Table 2: Statistics of FPGA 2024 contest benchmarks

Suite Name Nets (K) LUTs (K) FFs (K) DSPs BRAMs
LogicNets jscl 28 31 2 0 0
Rosetta fd 77 46 39 72 62
RapidWright picoblaze_array 148 76 77 0 0

VTR mcml 71 43 15 105 142
lu64peeng 143 90 36 128 303

Corundum 25g 166 73 96 0 221
100g 183 76 104 0 290

FINN radioml 110 74 46 0 25
mobilenetv1 296 202 140 48 562

Titan23 orig_gsm_x6 280 133 160 0 432
orig_dart_x4 351 299 176 0 0

MLCAD 2023 d181_lefttwo3rds 361 155 203 1,344 405
d181 535 229 303 1,824 576

BOOM
med_pb 54 36 17 24 142
soc 274 227 98 61 161
soc_v2 275 229 99 61 161

ISPD 2016
fpga03 387 214 168 500 590
example2 449 289 234 200 384
example2_v2 449 254 234 200 384

Koios 2.0
clstm_like_large 270 89 184 1,289 370
dla_like_large 509 189 362 2,209 192
dla_like_large_v2 509 189 363 2,209 192

CoreScore

500 179 96 116 0 250
500_pb 175 96 116 0 250
900 321 174 210 0 451
1200 428 233 280 0 601
1500 538 292 350 0 720
1700 617 344 399 0 720

4.4 Post-processing
In the final post-processing stage, we focus on routing the remain-
ing high-fanout nets or congested nets whichmay be difficult for the
parallel overlap-tolerant routing to fix. Like existing partitioning-
based parallel routers [3, 14, 17], we will conduct parallel routing
for the remaining unrouted or congested nets whose bounding
boxes do not overlap. It is worth mentioning that there are only
a few nets that need to be rerouted at this stage and the routing
time is significantly less than that of the overlap-tolerant routing
stage. Finally, the routing tree of each multi-pin net needs to be
constructed by merging the common routing paths of its connec-
tions. However, there may exist cycles in the resulting routing tree
when different routing paths share some RRG nodes. To remove
cycles, we will conduct the Dijkstra’s algorithm in the routing tree
to find the shortest path from each sink node to the source node
and remove the edges not in the shortest paths from the tree.

5 EXPERIMENTAL EVALUATION
In this section, we present the detailed experimental results of
different methods on the FPGA 2024 contest benchmarks. Potter is
implemented in C++, and we summarize the important parameters
adopted in Potter in Tab. 1. All experiments are conducted in a
high-performance computing (HPC) server with a 2.90GHz CPU.
The default number of threads is set as 32 for all methods. We adopt
the default evaluator used in the FPGA 2024 contest [4] to evaluate
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Table 3: Overall results. T and WL denote the running time and wire length of critical paths respectively. The reported running
time includes both IO and routing times. The geomean of results is calculated to reduce the effect of outliers.

Suite Name Vivado RWRoute [16] CUFR [14] GRoute Potter
T (s) WL T (s) WL T (s) WL T (s) WL T (s) WL

LogicNets jscl 75 310 50 226 32 234 57 248 23 221
Rosetta fd 147 888 162 839 123 804 71 896 45 812
RapidWright picoblaze_array 220 156 162 109 68 111 67 113 33 110

VTR mcml 494 666 246 594 94 584 97 685 43 607
lu64peeng 219 1,728 219 1,412 114 1,333 81 1,571 54 1,308

Corundum 25g -∗ -∗ 243 396 131 500 78 398 48 401
100g -∗ -∗ 226 549 105 549 76 575 46 562

FINN radioml 154 338 114 277 62 251 61 249 31 258
mobilenetv1 468 515 457 393 182 320 88 378 66 384

Titan23 orig_gsm_x6 400 406 482 298 188 289 95 307 66 271
orig_dart_x4 669 1,224 825 609 264 567 124 718 93 639

MLCAD 2023 d181_lefttwo3rds 409 1,159 1,754 809 406 771 165 924 125 727
d181 631 1,104 4,161 790 595 828 230 966 188 779

BOOM
med_pb 139 823 233 969 141 806 80 896 38 817
soc 711 2,235 1,264 1,698 632 1,673 279 1,732 230 1,708
soc_v2 870 1,643 4,976 1,167 1,231 1,020 554 1,239 205 982

ISPD 2016
fpga03 405 1,453 553 892 352 848 133 942 82 873
example2 386 1,481 566 1,114 312 939 97 1,018 83 1,003
example2_v2 397 1,265 504 765 257 683 116 702 76 669

Koios 2.0
clstm_like_large 324 390 174 263 95 228 71 339 48 238
dla_like_large 541 927 381 548 185 520 92 547 74 552
dla_like_large_v2 544 597 395 339 211 284 95 394 77 311

CoreScore

500 187 751 154 680 74 668 69 678 36 655
500_pb 227 861 270 687 138 739 79 674 50 660
900 336 1,586 298 1,199 134 1,216 84 1,345 53 1,215
1200 462 1,641 413 1,072 182 1,105 91 1,206 70 1,106
1500 547 1,679 566 1,254 236 1,331 128 1,389 93 1,302
1700 792 2,182 1,431 1,590 656 1,544 255 1,790 136 1,570

Geomean 354 897 410 642 183 616 106 679 66 617
Ratio of Geomean 5.34 1.45 6.18 1.04 2.76 1.00 1.59 1.10 1.00 1.00

*Vivado failed to route two cases from the corundum suite due to failure in DRC during the routing.

the running time and wire length of the critical paths. Since the
running time reported by the contest evaluator also includes the IO
time, we will also compare the routing time for each method. We
run all experiments five times and report the average results for all
methods to reduce the effect of randomness.

5.1 Benchmarks and Baselines
The circuits studied in the experiment include all the benchmarks in
the FPGA 2024 contest [4]. As shown in Tab. 2, there are 28 circuits
in total from 12 different suites of public circuit benchmarks. The
target FPGA device is Xilinx UtraScale+ xcvu3p. The placement
solutions are generated by Vivado.

We compared Potter with four baselines which are introduced
as follows:

• GRoute1 was the winner in the FPGA 2024 contest. It is
implemented in C++ and applies a two-phase multi-threaded
routing.

1The executable binary of the contest version was provided by the authors.

• CUFR2 [14] was the second place in the FPGA 2024 contest.
It is implemented in Java and utilizes a recursive partitioning
ternary tree to schedule the multi-net parallel routing.

• RWRoute [16] is an open-source sequential router provided
by Java-based RapidWright [6] and serves as a reference
router in the FPGA 2024 contest.

• Vivado v2021.1 was used to do the routing task with the com-
mand: "route_design -no_timing_driven -preserve",
following the settings of the FPGA 2024 contest. It is worth
noting that Vivado targets final performance, such as fre-
quency, while the evaluation metric in the experiment is
only wirelength.

5.2 Overall Results
The overall results of all the methods are presented in Tab. 3. Among
the four baselines, CUFR achieves the best wire length, and GRoute
has the best running time. The wire length of Potter is comparable
to that of CUFR, with 4% and 45% improvements over RWRoute
and Vivado, respectively. Moreover, the running time of Potter is

2The codes were obtained from https://github.com/xszang/parallel-routing.
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59% faster than the fastest baseline. These results demonstrate the
superiority of Potter in both speed and quality of routing.
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Figure 8: The routing time comparison. The ratios are calcu-
lated based on the average routing time of Potter.

Because the IO time may differ in different methods and could
become the bottleneck in small cases, we also compare the routing
times of different methods, as shown in Fig. 8. Compared with
Vivado and RWRoute, Potter achieves an average speedup of 8.24×
and 12.34×, respectively. Moreover, in some congested cases, such
as MLCAD d181 and BOOM soc_v2, Potter is around 30× faster
than RWRoute.

5.3 Stability Analysis
To reduce the idle time of threads and achieve maximum acceler-
ation, Potter does not synchronize the data modification on RRG
between different threads, which may bring a little variance in rout-
ing results. We analyze the stability of GRoute and Potter in five
runs of the experiments. Fig. 9 shows the mean routing time and
variance of GRoute and Potter for the ten slowest cases. Compared
with GRoute, Potter has much smaller standard variances, which
is mainly attributed to Potter’s ability to reduce resource conflicts
during net scheduling. Due to the low variance, Potter is much
more stable and reliable in practice.

5.4 Thread Analysis
We also test Potter and GRoute with different numbers of threads,
ranging from 1 to 32. As shown in Fig. 10, compared with GRoute,
the routing time improvement of Potter increases more linearly
with the number of threads, revealing the scalability of Potter. The
speedup slows down when the thread number reaches 32 because
the routing resource conflicts are more frequent and severe, requir-
ing more time to fix the resource overflow.

5.5 Ablation Study
Finally, we conduct an ablation study to demonstrate the effec-
tiveness of the dynamic congestion factor updating mechanism in
Potter. We replace the dynamic congestion factors in Potter with
the constant value used in RWRoute, which we refer to as Potter∗
in the following. As depicted in Fig. 11, compared with Potter∗, the
dynamic updating mechanism improves both the routing time and
wire length. Notably, the routing time of MLCAD d181 is acceler-
ated by 10.89× and the wire length of BOOM soc_v2 is reduced by
28%.
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Figure 9: Variance of routing times in five runs. The bar
length represents the mean and the line with caps on each
bar represents the varying range.
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Figure 10: Speedup of routing time with different threads.
The speedup is based on RWRoute.
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Figure 11: The ratio of Potter∗ to Potter. Ratios larger than 1
mean degradation of Potter∗ over Potter.

6 CONCLUSION
We have presented Potter, a fast parallel overlap-tolerant router
designed to accelerate routing for UltraScale FPGAs. By minimizing
net bounding box overlaps and balancing workloads across differ-
ent threads, Potter achieves the maximum parallelism for routing.
Additionally, we have proposed an algorithmic enhancement to
the congestion factor updating in the negotiation-based routing
algorithms, which accelerates routing convergence. Experimental
results on the FPGA 2024 contest benchmarks demonstrate the su-
periority of Potter over state-of-the-art methods in terms of routing
time and wire length. Moreover, as Potter supports the FPGAIF
format, it can seamlessly integrate with the Vivado flow, providing
a substantial acceleration to the FPGA development process.
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